
Inverse Painting: Reconstructing The Painting Process
BOWEI CHEN, University of Washington, USA
YIFAN WANG, University of Washington, USA
BRIAN CURLESS, University of Washington, USA
IRA KEMELMACHER-SHLIZERMAN, University of Washington, USA
STEVEN M. SEITZ, University of Washington, USA

Input

Generated Painting Process (Sampled Keyframes)

Input

Fig. 1. We present Inverse Painting, a diffusion-based method to generate time-lapse videos of the painting process from a target painting. This figure shows
10 keyframes from the generated painting process for two paintings. By training on acrylic paintings with a similar artistic style to that of the first example in
this figure, our method is capable of handling a diverse range of styles (e.g., Van Gogh, above bottom). The resulting videos resemble how human artists
typically paint, for example, from back to front, focusing on semantic objects or regions at a time, and employing layering techniques. Images courtesy
Catherine Kay Greenup and Rawpixel.

Given an input painting, we reconstruct a time-lapse video of how it may
have been painted. We formulate this as an autoregressive image generation
problem, in which an initially blank “canvas” is iteratively updated. The
model learns from real artists by training on many painting videos. Our
approach incorporates text and region understanding to define a set of
painting “instructions” and updates the canvas with a novel diffusion-based
renderer. The method extrapolates beyond the limited, acrylic style paintings
on which it has been trained, showing plausible results for a wide range
of artistic styles and genres. Our project page and code are available at:
https://inversepainting.github.io/

Authors’ addresses: Bowei Chen, University of Washington, 1410 NE Campus Pkwy,
Seattle, WA, 98195, USA, boweiche@cs.washington.edu; Yifan Wang, University of
Washington, Seattle, USA, yifan1@cs.washington.edu; Brian Curless, University of
Washington, Seattle, USA, curless@cs.washington.edu; Ira Kemelmacher-Shlizerman,
University of Washington, Seattle, USA, kemelmi@cs.washington.edu; Steven M. Seitz,
University of Washington, Seattle, USA, seitz@cs.washington.edu.

Additional Key Words and Phrases: Painting Process Reconstruction, Inverse
Painting, Diffusion Models

1 INTRODUCTION
When we look at a painting, we see only the final outcome of the
artist’s creative process. Leonardo da Vinci worked on theMona Lisa
for 16 years – it would be fascinating to see a time-lapse video of the
Mona Lisa’s creation. While no such video exists for Leonardo, there
are many videos online in which artists have filmed the creation of
entire paintings. These visualizations are fascinating in the way they
show hidden layers, structures, and provide insight into the artistic
creation process. While such visualizations currently exist for only
a tiny subset of paintings in the world, we propose to train machine
learning models on such data to predict how a wide variety of other
paintings could have been made. While the resulting videos should
not be treated as accurate reconstructions of any specific painting’s

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-2225-8796
HTTPS://ORCID.ORG/0000-0002-8246-2254
HTTPS://ORCID.ORG/0000-0002-0095-5400
HTTPS://ORCID.ORG/0009-0003-9498-584X
HTTPS://ORCID.ORG/0009-0000-4214-4078
https://inversepainting.github.io/
https://orcid.org/0000-0002-2225-8796
https://orcid.org/0000-0002-8246-2254
https://orcid.org/0000-0002-0095-5400
https://orcid.org/0009-0003-9498-584X
https://orcid.org/0009-0000-4214-4078

2 • Chen, et al

Fig. 2. How a real artist paints. Time lapse from a real painting video, representative of the training painting style. The artist uses a back-to-front order with
layering techniques, starting with the sky, then clouds, mountains, and other elements. The artist typically focuses on one semantic region at a time.

creation, they are nonetheless intriguing and insightful as plausible
reconstructions, in capturing rules that many painters employ, such
as layering, back-to-front-ordering, and focusing on objects/regions
in stages [Bob 1987; Dozier 2007]. While our approach was trained
only on acrylic paintings of landscapes, as shown in Fig. 2, we
believe that future models could produce plausible visualizations
for almost any piece of art.
Previous approaches [de Guevara et al. 2023; Ganin et al. 2018;

Hu et al. 2023b; Huang et al. 2019; Liu et al. 2021; Singh et al. 2021;
Singh and Zheng 2021; Zou et al. 2021] rely on hand-crafted painting
principles instead of learning them from the real painting processes.
Themost relevant work, Timecraft [Zhao et al. 2020], generates time-
lapse videos by learning from actual painting videos. However, it
operates only on low-resolution (50x50 pixels) patches and therefore
lacks holistic semantic context.
We define this task as an autoregressive image generation prob-

lem. It begins with a blank canvas, which is iteratively updated
based on its current state and the target painting. This sequential
updating continues until the artwork is completed. To implement
this, one possible approach, similar to Timecraft [Zhao et al. 2020], is
to train a network that takes the current and target images as inputs
and outputs the updated canvas at each step. However, we’ve found
that a purely pixel-based approach struggles to produce reasonable
results in practice, and thus we incorporate additional semantic
analysis.
In particular, we draw inspiration from the techniques used by

human artists. Consider the second painting in Fig. 1. Initially, an
artist decides on the semantic content to depict – such as the sky –
and selects appropriate areas of the canvas for this content, such as
the upper portion. Subsequently, the artist applies specific paints to
these regions, using blue for the sky, while leaving contents such
as stars for later stages. Building on this observation, we design a
two-stage method that decomposes the instruction generation and
canvas rendering. In the first stage, we generate a textual instruction
and a corresponding regionmask from the current and target images.
The textual instruction provides high-level guidance on the order
of painting, and its corresponding region mask directs the focus
area. In the second stage, a diffusion-based renderer is proposed to
leverage the textual instruction and region mask, in conjunction
with the current and target images, to effectively update the canvas.

Our method can handle in-the-wild landscape paintings across
diverse artistic styles (e.g., Impressionism and Realism) and color
themes, ranging from dark to bright. We demonstrate that our ap-
proach surpasses current state-of-the-art methods in creating high-
quality, human-like painting videos, supported by both qualitative
and quantitative results, as well as human studies.

2 RELATED WORK

2.1 Painting Process Generation
Stroke-Based Rendering. This is a computer graphics technique
that creates non-photorealistic images by placing discrete elements
like brush strokes instead of traditional pixels [Frans and Cheng
2018; Fu et al. 2011; Ganin et al. 2018; Ha and Eck 2017; Haeberli 1990;
Hertzmann 1998; Jia et al. 2019; Litwinowicz 1997; Liu et al. 2023b;
Tang et al. 2017; Xie et al. 2013]. The painting process can be ob-
tained by visualizing the sequence of element placement. However,
many studies mainly focus on generating images in various artistic
styles [Kotovenko et al. 2021; Litwinowicz 1997; Liu et al. 2023b;
Xie et al. 2013; Zou et al. 2021]. They often overlook the order and
position of brush stroke placement, resulting in a non-human-like
painting process. To produce a more human-like painting process,
recent work constrains the placement of brush strokes based on
predefined painting principles using techniques such as reinforce-
ment learning (RL) [de Guevara et al. 2023; Ganin et al. 2018; Hu
et al. 2023b; Huang et al. 2019; Singh et al. 2021; Singh and Zheng
2021; Zou et al. 2021] or Transformers [Liu et al. 2021]. For exam-
ple, [Liu et al. 2021] developed a Transformer-based [Vaswani et al.
2017] feed-forward painter that applies a coarse-to-fine painting
strategy. Initially, the painter works from a blurry (downsampled)
version of the target painting, progressively refining the canvas
using higher-resolution versions until the painting is complete.

However, these techniques face two limitations: (1) They rely on
hand-crafted painting principles that do not accurately mimic the
actual human painting process, whereas our method learns from
real-world painting data. (2) Their parameterized brush strokes fail
to capture the full variation observed in real painting processes and
result in an approximate version of the target painting. In contrast,
our diffusion-based renderer effectively handles these variations
and recreates the target painting more accurately.
Pixel-Based Generation. This stream of work generates the paint-
ing process by directly updating pixels on the canvas [Leiser and
Schlippe 2021; Wang et al. 2024; Zhao et al. 2020]. [Wang et al.
2024] used a Vision Transformer (ViT) [Dosovitskiy et al. 2020]
to map a target image to a series of 9 intermediate images via a
non-autoregressive approach. However, this method is specifically
tailored for traditional Chinese painting. The work most related
to ours is Timecraft [Zhao et al. 2020], which generates time-lapse
videos from paintings by learning from actual painting videos. How-
ever, their method is limited to low-resolution (50x50 pixels) crops,
neglecting the full artwork’s context. Our method handles full paint-
ings with higher resolution.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

Inverse Painting: Reconstructing The Painting Process • 3

2.2 Diffusion Models
Diffusion models have recently demonstrated their success in vari-
ous tasks such as text-to-image [Rassin et al. 2022; Rombach et al.
2022; Saharia et al. 2022], image-to-image translation [Chen et al.
2023; Yang et al. 2022], and image-to-video synthesis [Blattmann
et al. 2023; Hu et al. 2023a]. [Blattmann et al. 2023] developed a
latent video diffusion model capable of generating videos from an
initial frame. [Hu et al. 2023a] proposed a diffusion framework to
synthesize character animation videos from a reference image and
a sequence of target poses. This framework includes a component
called ReferenceNet to inject features from the reference image
directly into the denoising UNet of the diffusion model. In this pa-
per, we adopt the ReferenceNet to inject the target image into our
diffusion-based renderer.

3 OUR METHOD
In a real painting process, an artist continually applies changes to the
current state of the canvas. Ourmethod formulates this process as an
autoregressive image generation problem. Given a target painting 𝐼𝑇
as input, we reconstruct a time-lapse video consisting of𝑇 keyframes
{𝐼1, ..., 𝐼𝑇 }, starting from a blank canvas 𝐼0 progressively towards the
target 𝐼𝑇 . Each keyframe transition represents a fixed time interval,
a feature of time-lapse videos. We start by presenting a one-step
canvas rendering approach for each canvas update and discussing its
limitations in Sec. 3.1. This motivates our two-stage design, which
incorporates additional semantic analysis. The details of the training
process are described in Sec. 3.2 and 3.3, while the testing is covered
in Sec. 3.4. Fig. 3 shows an overview of the method.

3.1 One-Stage Canvas Rendering Approach
For clarity, we will refer to step 𝑡 −1 as the current step and step 𝑡 as
the next step. The goal is to render next image 𝐼𝑡 based on 𝐼𝑡−1 and
𝐼𝑇 . We approach this as an image translation problem, and design a
diffusion-based renderer based on the denoising UNet𝑔𝑢 from Stable
Diffusion [Rombach et al. 2022]. This renderer leverages image
priors to enhance image quality by initializing 𝑔𝑢 with pretrained
weights from Stable Diffusion.

We train this diffusion-based renderer with inputs {𝐼𝑡−1, 𝐼𝑇 ,Δ𝑡 },
where 𝐼𝑡−1 is the ground-truth (GT) current image, and Δ𝑡 is the
actual time interval between 𝐼𝑡−1 and GT next image 𝐼𝑡 . By incor-
porating Δ𝑡 , we model the time spent on each update in the paint-
ing process, enabling the generation of videos with time-informed
keyframes during testing. The output 𝐼𝑡 , which predicts the next
image, is supervised using 𝐼𝑡 . For supervision, we start with a clean
latent 𝑧0 = 𝐸𝐼 (𝐼𝑡), where 𝐸𝐼 is the pretrained VAE encoder in Stable
Diffusion. We then apply the forward process to produce a noisy
latent 𝑧𝑠 = 𝛽𝑠𝑧0 + (1 − 𝛽𝑠)𝜖 , where 𝑠 denotes a randomly sam-
pled denoising timestep, 𝜖 represents Gaussian noise, and 𝛽𝑠 is a
weighting parameter dependent on 𝑠 . The denoising UNet 𝑔𝑢 is then
employed to denoise 𝑧𝑠 . We update the parameters of the renderer
by minimizing the following loss function:

L = E𝑠,𝑧0,𝜖 | |𝑔𝑢 (𝑧𝑠 , 𝑐, 𝑠) − 𝜖 | |22, (1)

where 𝑐 represents the conditional signals of 𝑔𝑢 , consisting of fea-
tures of {𝐼𝑇 , 𝐼𝑡−1,Δ𝑡 }.We extract these features usingReferenceNet

𝑔𝑟 , feature encoder 𝑔𝑓 , time encoder 𝑔𝑡 and next CLIP genera-
tor 𝑔𝑐 . During the training, we jointly update 𝑔𝑢 , 𝑔𝑟 , 𝑔𝑓 , 𝑔𝑡 , and 𝑔𝑐
using Eq.1. Please refer to the gray box “Training: Canvas Rendering”
in Fig. 3 (excluding the mask and text in the purple box).
ReferenceNet 𝑔𝑟 . The target image 𝐼𝑇 is integrated into 𝑔𝑢 through
𝑔𝑟 , as introduced in [Hu et al. 2023a]. The ReferenceNet 𝑔𝑟 utilizes
the same UNet architecture and pretrained weights (for initializa-
tion) from Stable Diffusion [Rombach et al. 2022], ensuring feature
extraction within the same feature space as 𝑔𝑢 . It takes the target
image 𝐼𝑇 as input, and extracts intermediate feature maps from
its self-attention layers. These feature maps are then fused into
𝑔𝑢 by concatenating them with corresponding feature maps from
the same layers in 𝑔𝑢 . We opt for the design of ReferenceNet be-
cause it fuses features more effectively than other designs, such as
ControlNet [Zhang et al. 2023], in practice.
Feature encoder 𝑔𝑓 . It consists of a shallow convolutional neural
network (CNN) to encode 𝐼𝑡−1, denoted as 𝑔𝑓 (𝐼𝑡−1). We found that
this shallow network effectively learns features of 𝐼𝑡−1 while saving
computational time. The encoded feature map has the same spatial
resolution of 𝑧𝑠 (noisy latent of 𝐼𝑡), and is concatenated with 𝑧𝑠 along
channel dimension as spatial input to the 𝑔𝑢 during training. The
first layer of 𝑔𝑢 is modified to adjust to the new channel dimension.
Time encoder 𝑔𝑡 and next CLIP generator 𝑔𝑐 . First, we design a
time encoder 𝑔𝑡 that applies positional encoding – same as that used
in NeRF [Mildenhall et al. 2021] – to theΔ𝑡 , followed by amulti-layer
perceptron (MLP) that maps the positional encoding feature dimen-
sion from 21 to 768. This results in the time embeddings 𝑔𝑡 (Δ𝑡). The
advantage of positional encoding lies in its ability to adapt to vary-
ing Δ𝑡 across different training samples. This continuous encoding
enhances interpolation capabilities, useful for handling specific time
intervals during testing. Moreover, to provide additional painting
guidance for 𝑔𝑢 , we introduce the next CLIP generator 𝑔𝑐 , imple-
mented as an MLP. This module inputs the CLIP embeddings of 𝐼𝑡−1
and 𝐼𝑇 , and outputs the predicted CLIP feature of the next image.
This predicted CLIP feature and 𝑔𝑡 (Δ𝑡) are concatenated and fed
into the cross-attention layers of 𝑔𝑢 .
Fig. 5 (b) illustrates the results of using this model without in-

corporating Δ𝑡 . In this scenario, significant content is added in a
single update, which does not effectively represent the progressive
nature of the painting process. When Δ𝑡 is included through 𝑔𝑡
(Fig. 5 (c)), the new content volume per update is better controlled;
however, this approach still results in unnatural rendering of moun-
tains, as the yellow layers prematurely appear before the completion
of the green mountain base. This indicates that a purely pixel-based
network struggles to fully capture the semantics of the painting,
prompting the need for more explicit semantic controls.

3.2 Training: Instruction Generation
To address the aforementioned issues of the purely pixel-based
method, we draw inspiration from typical artistic practices, where
artists decide what to paint and where, then apply paint accordingly.
Based on this observation, we propose a two-stage method (Fig. 3)
where we first generate text and mask instructions as semantic
guidance. These instructions are then used to steer the diffusion-
based renderer. In this section, we describe the training of a text

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

4 • Chen, et al

Training: Instruction Generation

Target GT Current

Generated
Text:

“Grass”

GT Text:
“Grass”

Generated Mask

Training: Canvas Rendering

Difference Mask

GT Time Interval:
15 s

Question Text:
What to paint next?

Loss GT Mask

Loss

Target GT Current GT Time
Interval: 15 s

Noisy GT Next Denoised GT Next

Testing: Step t-1

Text Instruction
Generator

Generated CurrentTarget

Generated Text:
“Grass”

Mask Instruction
Generator

Canvas
Rendering

Generated
Mask

Generated Next

Time Interval:
20 s

Text Instruction
Generator

<latexit sha1_base64="qJgdpmqdxZeZysfEd5lq5+pna18=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s4m7E7GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZACgUNFCihnWhgUSChFYxupn7rEbQRsbrHcQJ+xAZKhIIztFJ70MsQnnDSK1fcqjsDXSZeTiokR71X/ur2Y55GoJBLZkzHcxP0M6ZRcAmTUjc1kDA+YgPoWKpYBMbPZvdO6IlV+jSMtS2FdKb+nshYZMw4CmxnxHBoFr2p+J/XSTG88jOhkhRB8fmiMJUUYzp9nvaFBo5ybAnjWthbKR8yzTjaiEo2BG/x5WXSPKt6F9Xzu/NK7TqPo0iOyDE5JR65JDVyS+qkQTiR5Jm8kjfnwXlx3p2PeWvByWcOyR84nz+UaJBW</latexit>gtext

Mask Instruction
Generator

<latexit sha1_base64="1vSAb496dWUblX5y5YVTfnE82KM=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnWE/k8SMp/1yxat6c+BV4uekAjka/fJXbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDN753iM6cMcBRrV8riufp7IiPSmIkMXackdmSWvZn4n9dNbXQdZFwlqWWKLhZFqcA2xrPn8YBrRq2YOEKo5u5WTEdEE2pdRCUXgr/88ippXVT9y2rtvlap3+RxFOEETuEcfLiCOtxBA5pAQcAzvMIbekQv6B19LFoLKJ85hj9Anz9uSZA9</latexit>gmask

Next CLIP
Generator

Reference
Net

Feature
Extractor<latexit sha1_base64="OjdJAtArf4l4nlO2fVuA9f1fqeg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3TpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnshHM07Rj2kkecgZNVZ6iPqqX664VXcOskq8nFQgR6Nf/uoNEpbFKA0TVOuu56bGn1BlOBM4LfUyjSllIxph11JJY9T+ZH7qlJxZZUDCRNmShszV3xMTGms9jgPbGVMz1MveTPzP62YmvPYnXKaZQckWi8JMEJOQ2d9kwBUyI8aWUKa4vZWwIVWUGZtOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjCI4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBXPI3Z</latexit>gr

<latexit sha1_base64="Oh5Y7aiO9Xk2DbGSbBE8x36j6as=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3TpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZhGSoSCUbTSQ9QP++WKW3XnIKvEy0kFcjT65a/eIGFZzBUySY3pem6K/oRqFEzyaamXGZ5SNqIR71qqaMyNP5mfOiVnVhmQMNG2FJK5+ntiQmNjxnFgO2OKQ7PszcT/vG6G4bU/ESrNkCu2WBRmkmBCZn+TgdCcoRxbQpkW9lbChlRThjadkg3BW355lbQuqt5ltXZfq9Rv8jiKcAKncA4eXEEd7qABTWAQwTO8wpsjnRfn3flYtBacfOYY/sD5/AFFDI3N</latexit>gf
<latexit sha1_base64="dv4UGCdJ7D/u6FvfDZ/n4rJmtmw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3TpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZhGSoSCUbTSQ9Rn/XLFrbpzkFXi5aQCORr98ldvkLAs5gqZpMZ0PTdFf0I1Cib5tNTLDE8pG9GIdy1VNObGn8xPnZIzqwxImGhbCslc/T0xobEx4ziwnTHFoVn2ZuJ/XjfD8NqfCJVmyBVbLAozSTAhs7/JQGjOUI4toUwLeythQ6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjCI4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBAgI3K</latexit>gc

Denoising
UNet

<latexit sha1_base64="SVyf5bWtLmH8o+Tlmhaq96rnqxE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3TpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnshHM07Rj2kkecgZNVZ6iPpZv1xxq+4cZJV4OalAjka//NUbJCyLURomqNZdz02NP6HKcCZwWuplGlPKRjTCrqWSxqj9yfzUKTmzyoCEibIlDZmrvycmNNZ6HAe2M6ZmqJe9mfif181MeO1PuEwzg5ItFoWZICYhs7/JgCtkRowtoUxxeythQ6ooMzadkg3BW355lbQuqt5ltXZfq9Rv8jiKcAKncA4eXEEd7qABTWAQwTO8wpsjnBfn3flYtBacfOYY/sD5/AFbyI3c</latexit>gu

GT Mask

GT Text:
“Grass”

Time
Encoder

<latexit sha1_base64="kzIO8UpufaahOXebUBLO6k1fdOw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3TpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZhGSoSCUbTSQ9THfrniVt05yCrxclKBHI1++as3SFgWc4VMUmO6npuiP6EaBZN8WuplhqeUjWjEu5YqGnPjT+anTsmZVQYkTLQthWSu/p6Y0NiYcRzYzpji0Cx7M/E/r5theO1PhEoz5IotFoWZJJiQ2d9kIDRnKMeWUKaFvZWwIdWUoU2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExhE8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBaRI3b</latexit>gt

Time
Encoder

Time Interval:
20 s

<latexit sha1_base64="kzIO8UpufaahOXebUBLO6k1fdOw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3TpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZhGSoSCUbTSQ9THfrniVt05yCrxclKBHI1++as3SFgWc4VMUmO6npuiP6EaBZN8WuplhqeUjWjEu5YqGnPjT+anTsmZVQYkTLQthWSu/p6Y0NiYcRzYzpji0Cx7M/E/r5theO1PhEoz5IotFoWZJJiQ2d9kIDRnKMeWUKaFvZWwIdWUoU2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExhE8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBaRI3b</latexit>gt

Fig. 3. Method overview. The training has two stages. The instruction generation stage (left two gray boxes) includes the text instruction generator (green)
and the mask instruction generator (light orange). These generators produce the text and mask instructions essential for updating the canvas in the next stage.
The second stage is canvas rendering (third gray box), where a diffusion-based renderer generates the next image based on multiple conditional signals, such
as text and mask instructions. Omitting the text and mask (purple boxes) yields the one-stage method described in Sec. 3.1. To simplify the figure, we omit the
VAE encoder, CLIP encoder, and text encoder. During testing at step 𝑡 − 1 (last gray box), we first generate a text instruction (green arrows), which is then
used to create a region mask (orange arrows). Both are then provided to the canvas rendering stage to produce the next image (blue arrows). Image courtesy
Catherine Kay Greenup.

and mask generator. These two generators are used to produce two
types of instructions for each canvas update: a text instruction 𝑝𝑡 ,
describes what semantic content to paint, and a region mask �̂�𝑡 ,
specifies the focus regions corresponding to the text instruction.

3.2.1 Text Instruction Generator. Like an artist who envisions a
target image and compares it to the current state of the work to de-
cide what to paint next, our text instruction generator must discern
visual content and generate appropriate textual instructions. This
provides high-level guidance for the painting order. We implement
this generator using the architecture of a large vision-language
model LLaVA [Liu et al. 2023a]. LLaVA accepts a single image com-
bined with a question text prompt and produces a response text
prompt. For training, as the generator requires a single image input,
we horizontally concatenate the target image, 𝐼𝑇 , and the ground-
truth current image, 𝐼𝑡−1, to form the input. The text instruction 𝑝𝑡
is generated as follows:

𝑝𝑡 = 𝑔𝑡𝑒𝑥𝑡 ([𝐼𝑇 , 𝐼𝑡−1], 𝑝), (2)

where 𝑔𝑡𝑒𝑥𝑡 is the generator, and [·, ·] is horizontal concatenation of
two images. 𝑝 is the question text prompt (details in supplementary).
To enhance the model’s performance and reduce training time,

we initialize the text generator, 𝑔𝑡𝑒𝑥𝑡 with pretrained weights of
LLaVA 1.5 [Liu et al. 2023a]. The text generator is fine-tunedwith full
supervision of the ground-truth text instructions 𝑝𝑡 . The leftmost
gray box in Fig. 3 visualizes this process, where “grass” is generated
as the text instruction for the next step.
Fig. 4 shows the text instructions generated during the painting

process of in-the-wild paintings at test time. These instructions
guide our renderer to use layering techniques, painting from back to
front. This demonstrates that 𝑔𝑡𝑒𝑥𝑡 not only captures the semantic
essence of the target paintings but also effectively learns the painting
order from the dataset.

3.2.2 Mask Instruction Generator. On top of what to paint, an artist
also decides where on the canvas to apply the content. Our method

Sky

Cloud

MountainTree

Grass Flower

Sky

Water

Island

Reflection

Details

Fig. 4. Generated text instructions. The sequence of generated text in-
structions (yellow text and arrows) demonstrate a natural painting order,
arranging elements from back to front such as clouds over the sky, flowers
over grass, and reflections over water. The “Details” in the right image refers
to water texture and small details on the island. Each text instruction may
repeat over multiple frames but is displayed only once to simplify this figure.
Images courtesy the Art Institute of Chicago and Cleveland Museum of Art.

formulates this as a binary region mask, �̂�𝑡 . This mask provides
instructions that specify focus regions for each step of the painting
process. For training, as visualized in the second gray box in Fig. 3,
our mask instruction generator considers 4 factors to determine the
intended painting region: (1) The GT current image 𝐼𝑡−1 and target
image 𝐼𝑇 . (2) Text instruction 𝑝𝑡 . During training, we use the ground-
truth instruction 𝑝𝑡 to ensure that the training is guided by accurate
instructional data. (3) Difference mask𝑀𝑑 , which represents areas
of the current canvas that are still incomplete relative to the target
image. This binary mask𝑀𝑑 is derived by computing the difference
map between 𝐼𝑇 and 𝐼𝑡−1 using perceptual distance [Zhang et al.
2018]. This difference map is then binarized using a threshold 𝛼 =

0.2, setting pixels with values above 𝛼 to 1 in 𝑀𝑑 . Formally, we
define the operations of computing 𝑀𝑑 as 𝐷 (𝐼𝑇 , 𝐼𝑡−1, 𝛼). (4) Time
interval Δ𝑡 , which can influence the size of the intended painting
regions, as less area may be covered when less time is available.
Considering all these factors, we design our mask instruction

generator based on the UNet proposed in Stable Diffusion (but

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

Inverse Painting: Reconstructing The Painting Process • 5

(a) Inputs (b) CLIP Embed (CE) (c) CE + Time Embed (TE) (d) CE + TE + Text (e) CE + TE + Mask (f) CE + TE + Text + Mask

Fig. 5. Effects of conditional signals. (a) shows the current canvas and target image (inset). With only predicted CLIP embeddings of the next image (b), the
model generates excessive content per update. Including time intervals (c) properly limits new content volume but results in unnatural mountain rendering.
Omitting the mask instruction (d) causes the renderer to complete the mountain area in one step, relying heavily on the text instruction “mountain”. Omitting
the text instruction (e) results in generating some of the green lake (red arrow) before completing the mountain (mask shown in the inset). The full pipeline (f)
updates the canvas at a reasonable pace, drawing the top of the mountain in green, before layering on the yellow region. Image courtesy Catherine Kay
Greenup.

without noise as input). The cross-attention design of this UNet
architecture allows us to seamlessly incorporate textual and time
interval information as conditional signals.

The mask generator 𝑔𝑚𝑎𝑠𝑘 has two inputs. The first one is spatial
input, which includes 𝐼𝑇 , 𝐼𝑡−1, and 𝑀𝑑 . Specifically, we begin by
encoding 𝐼𝑇 and 𝐼𝑡−1 using the pretrained VAE image encoder 𝐸𝐼 .
This encoder reduces the spatial resolution by a factor of 8 and
converts the channel dimension from 3 to 4. We then concatenate
these encoded images with the downsampled𝑀𝑑 (notation remains
unchanged for simplicity) along the channel axis to form the com-
posite spatial input: [𝐸𝐼 (𝐼𝑇), 𝐸𝐼 (𝐼𝑡−1), 𝑀𝑑]. This spatial input is fed
into the UNet similarly to Sec. 3.1.
The second one is the conditional input, which encodes 𝑝𝑡 and

Δ𝑡 . We first use the pretrained text encoder 𝑔𝑝 in Stable Diffusion
to encode 𝑝𝑡 , producing a text embedding with 77 tokens, each of
dimension 768. For Δ𝑡 , similar to Sec. 3.1, we use 𝑔𝑡 (same archi-
tecture but different weights) to compute time embeddings with
dimension 1 x 768. The time embedding is treated as an additional
token and concatenated with the text embeddings to form the 78-
token conditional input [𝑔𝑝 (𝑝𝑡), 𝑔𝑡 (Δ𝑡)] for cross-attention layers.
Formally, we denote the generation of �̂�𝑡 as follows:

�̂�𝑡 = 𝑔𝑚𝑎𝑠𝑘 ([𝐸𝐼 (𝐼𝑇), 𝐸𝐼 (𝐼𝑡−1), 𝑀𝑑], [𝑔𝑝 (𝑝𝑡), 𝑔𝑡 (Δ𝑡)]). (3)

During the training, we keep 𝑔𝑝 and 𝐸𝐼 frozen, and update weights
in 𝑔𝑚𝑎𝑠𝑘 and 𝑔𝑡 . The training is supervised by the downsampled GT
mask𝑀𝑡 = 𝐷 (𝐼𝑡 , 𝐼𝑡−1, 𝛼) using the binary cross-entropy loss.

3.3 Training: Canvas Rendering
Canvas rendering aims to generate 𝐼𝑡 using the current and tar-
get images, alongside text and mask instructions, within a speci-
fied time interval. We modify the diffusion renderer introduced in
Sec. 3.1 to integrate text and mask instructions while keeping other
components unchanged, as shown in Fig. 3 (third gray box). For
training, we use the ground-truth text and mask. Specifically, we
replace 𝑔𝑓 (𝐼𝑡−1) with 𝑔𝑓 ([𝐼𝑡−1, 𝑀𝑡]). Here [·, ·] refers to concatena-
tion along channel axis. We modify first layer of 𝑔𝑓 to handle this
change. The text 𝑝𝑡 is encoded by 𝑔𝑝 , concatenated with predicted
CLIP embeddings and time embeddings, and then input into the
cross-attention layers. We found these CLIP embeddings provide
semantic features beyond what is captured by explicit text and mask

instructions alone. For instance, consider column 2 in row 1 of
Fig. 6, where the text “mountain” and its corresponding mask serve
as the instructions. These instructions do not specify whether the
mountain should be painted with intricate details or in a rough,
preliminary form, with finer details to be added later. Without CLIP
embeddings, the model completes the mountain in full detail, devi-
ating from the painting style of the training set. Incorporating the
embeddings helps guide the model to adhere to the painting style.
Fig. 5 demonstrates the impact of excluding various conditional

signals. By omitting the mask, variant (d) generates the entire se-
mantic content (i.e., mountain) at once, underscoring the importance
of pixel-level mask guidance. Without text for high-level semantic
guidance, variant (e) unexpectedly paints some of the green lake
on the canvas. In contrast, the full pipeline (f) achieves the most
natural result by integrating all these conditions.

3.4 Test-Time Generation
At inference time, we begin with a blank (white) canvas 𝐼0, and
update this canvas autoregressively using our trained pipeline to
approximate a target painting 𝐼𝑇 . We use a fixed time interval Δ̂𝑡
across all steps, following our definition of keyframes. This process is
terminated when minimal updates are applied (see supplementary).
We visualize an update in a specific step 𝑡 −1 in Fig. 3 (the rightmost
gray box). Given the current image 𝐼𝑡−1 predicted by previous step,
we first generate the text instruction 𝑝𝑡 by employing Eq.2 and
substituting 𝐼𝑡−1 with 𝐼𝑡−1. Then we compute the mask �̂�𝑡 using
Eq.3 by replacing 𝐼𝑡−1 with 𝐼𝑡−1, 𝑀𝑑 with �̂�𝑑 = 𝐷 (𝐼𝑇 , 𝐼𝑡−1, 𝛼), 𝑝𝑡
with 𝑝𝑡 , and Δ𝑡 with Δ̂𝑡 . Finally, to render 𝐼𝑡 , we start with random
noise 𝑧𝑆 and perform 𝑆 denoising steps using {𝐼𝑡−1, 𝐼𝑇 , 𝑝𝑡 , �̂�𝑡 , Δ̂𝑡 }
through diffusion renderer. This results in 𝑧0 which is decoded
by the VAE decoder from Stable Diffusion, producing 𝐼𝑡 . Please
refer to the supplementary for details on training and test-time
generation, including hyperparameters, execution time, and GT text
annotations.
Fig. 6 visualizes consecutive keyframes of the painting process

generated by our method, guided by the text and mask instructions.
In the early stages of the process (row 1), the method typically
focuses on a single semantic class per update. In latter stages of
the process (row 2), once the background is completed, the focus

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

6 • Chen, et al

Target Image

Target Image

water whale details details details

mountain grass grasssky mountain

17 more frames

…

13 frames

…

Fig. 6. Qualitative results with generated texts and masks.We show five consecutive generated keyframes (left) given in-the-wild target images (far-right).
The text (caption) and mask (inset) for each keyframe are the generated instructions used to produce that keyframe. The first row illustrates the early stages
of the process, where our method paints sequentially from back (sky) to front (grass), typically focusing on one subject per keyframe based on the provided
text and mask. For instance, keyframes 4 and 5 focus exclusively on grass, disregarding other elements like trees (layered on later) that occupy the same region
of the target image. The second row depicts the final stages of the painting process for a different painting. Here, our method paints the water before layering
on the whale. The process concludes with the addition of final details scattered throughout the painting (as guided by text and mask), mimicking techniques
used by human artists. The resulting keyframe sequence reflect human-like decisions in painting order, semantic attention, and layering techniques. Images
courtesy Catherine Kay Greenup.

switches to completing foreground and refining details. Here, “de-
tails” refer to fine elements typically painted in the later stages such
as the ocean spray. In the second row of Fig. 6, columns 4-6 illus-
trate the finishing of these elements using the same text instruction
“details” but different mask instructions over three frames.

4 EXPERIMENTS
Datasets. We collected a dataset of 294 videos with typical acrylic
landscape painting processes. The collection features common themes
such as mountains, trees, flowers, and lakes, with paintings repre-
senting various times of day and weather conditions. Each video
averages 9 minutes in length and is often sped up for more efficient
viewing. The footage comprehensively captures the complete paint-
ing process, including views of the canvas and palette as well as
continuous hand and paintbrush movements throughout the video.

For data preprocessing, we employed a pretrained segmentation
method [Liu et al. 2023c] to segment all video frames, cropping them
to focus solely on the canvas areas. Further, the cropped frames
showing hands, paint strokes, or minimal changes were excluded.
After preprocessing, we divided the dataset into 265 training and
29 validation paintings. Both subsets have an average of 27 frames
per artwork, with time intervals averaging around 23.6 seconds in
training and 22.0 seconds in validation between frames. The training
and validation sets have 7261 and 783 pairs. During testing, the time
interval is set to 20 seconds unless stated otherwise.
Our Results. Fig. 7 shows the outcomes of our pipeline on in-
the-wild paintings. First, the generated painting process resembles
human-like painting orderings, typically painting from back to front,
saving foreground objects and fine details for the last stages. For
example, in row 1, the sequence starts with the sky, moves to the
water, and finishes with foreground objects and details such as
the boats, the sun, its reflection, and water texture. Second, each
phase of the painting process focuses on specific semantic objects
or areas. For instance, transitions from columns 3 to 6 in row 1

mainly focus on the sun, its reflection on the water, and the boats,
respectively. Third, the underlayering contents are reliably rendered
in the intermediate images when applying the layering techniques.
For example, the base of the mountain is painted in row 2, column
1, with additional details added in column 2. Similarly, clouds are
layered across the sky in row 6, columns 1 to 2. Finally, our method
effectively handles artworks of various aspect ratios and artistic
styles such as Impressionism. It also accommodates paintings with
varied color themes. More results are in supplementary.
Baselines. We consider three baselines in the main paper (more
baselines in supplementary). (1)Timecraft [Zhao et al. 2020] employs
a conditional variational autoencoder to create time-lapse videos
from paintings. It trains on real painting videos to emulate the
human painting process. However, it handles only low-resolution
50x50 crops from downscaled paintings (126x168) due to computa-
tional limits. We trained the model on our dataset following their
training strategy. For evaluation, we resized the target painting to
50x50 as input and scale the output videos back to the original paint-
ing’s resolution. See the supplementary for evaluation on cropped
paintings. (2) Paint Transformer [Liu et al. 2021] generates a stroke-
level painting process from an input painting. This self-supervised
method does not rely on real painting videos, but instead employs
a hand-crafted coarse-to-fine strategy to mimic human painting
process. We used the pretrained model provided by the authors for
our comparisons. Please see supplementary for more stroke-based
rendering baselines [Hu et al. 2023b; Zou et al. 2021]. (3) Stable Video
Diffusion (SVD) [Blattmann et al. 2023] produces a 14- or 25-frame
video given the first frame as input. We fine-tuned a 14-frame model
on our dataset using LoRA[Hu et al. 2021]. During this fine-tuning,
we sampled one frame from our training sequences as input and
its previous 13 frames as ground truth, padding with white images
where necessary. For inference, the target painting was input into
the fine-tunedmodel to generate 14 frames. The final frame from this
sequence initiated the next set of 14 frames, continuing until a white

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

Inverse Painting: Reconstructing The Painting Process • 7

Generated Painting Process (Sampled KeyFrames)

Fig. 7. Qualitative results. We show results on in-the-wild paintings (right-most column), where the left five columns are sampled keyframes from the
generated painting process. Our method effectively handles landscape paintings across various artistic styles, including Impressionism, Post-Impressionism,
and Realism. It also adapts to different color themes, as shown. The generated videos showcase human-like layering techniques, painting orders, and semantic
region attention. Images courtesy Catherine Kay Greenup, National Gallery of Art, Washington, and Rawpixel.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

8 • Chen, et al

canvas is achieved. Please see supplementary for implementation
details of all baselines.
Metrics. We aim to evaluate the methods in 5 aspects. (1) Human-
likeness of the painting order. This measures whether the generated
videos mimic human painting order. (2) Focus consistency in can-
vas updates. This checks if each update targets specific, reasonable
areas. (3) Convergence speed towards the target painting. This eval-
uates the speed at which the generated video progresses towards
the target painting. (4) Adherence to specified time intervals be-
tween keyframes. This evaluates whether the temporal progression
between generated keyframes aligns with predefined intervals, re-
flecting the dynamics of an actual painting process. (5) Video quality.
We design 5 metrics to cover these aspects.

• LPIPS. This addresses aspects (1) and (4). It calculates the
perceptual distance between each frame in the real paint-
ing video and the closest generated keyframe based on the
time. For example, a real frame at 1:17 is compared with the
generated frame at 1:20, assuming a 20-second time interval.

• IoU (Intersection over Union). It evaluates aspect (2) with-
out considering painting order. We first compute difference
masks for consecutive frames in both real and generated
videos using the function 𝐷 (defined in Sec. 3.2.2). For each
generated difference mask, we then calculate the IoU with all
real difference masks, selecting the highest value as the final
IoU.

• DDC (Difference of Distance Curve). It evaluates aspects (3)
and (4) by comparing the distance curves of the generated
and real sequences. The distance curve of a sequence de-
picts its progression towards the target painting, plotting
time (x-axis, minutes) against LPIPS distance (y-axis) between
target and current images. We use Dynamic Time Warping
(DTW) [Müller 2007] to compute the difference between gen-
erated and real curves, accommodating time shifts.

• DTS (Difference of Time Spent). Evaluating aspect (4), DTS
measures the temporal difference in minutes between the
durations of the real and generated painting videos.

• FID (Fréchet InceptionDistance) [Heusel et al. 2017] compares
frames in generated and GT videos for aspect (5).

To compute these metrics, for SVD and Timecraft (trained on
our dataset), we set the time interval to 23.6 seconds, matching our
training set’s average. For the self-supervised Paint Transformer, we
set it to 2.8 seconds, based on the average training video duration
(561 seconds) divided by the number of frames (200). All metrics are
calculated for each painting and averaged across the validation set
to derive overall performance metrics.
Comparison with Baselines. First, we present a qualitative com-
parisonwith baselines, as illustrated in Fig. 8. SVD generates artifacts
such as the red blocks in the sky regions of column 1. This issue
occurs because the target image has a tree that obscures this area,
and SVD fails to realistically render the obscured regions. It also
results in unreasonable painting orders and often stalls during the
painting process, leading to extended convergence times (columns 5
and 6). Paint Transformer demonstrates a non-human-like painting
order in which strokes are added in parallel to different grid cells
of a canvas. Timecraft produces visible artifacts in low-resolution

Method LPIPS ↓ IoU ↑ DDC ↓ DTS ↓ FID ↓
Paint Transformer 0.643 0.104 94.61 6.057 337.3
Timecraft 0.602 0.251 153.2 9.964 289.8
SVD 0.500 0.197 135.5 8.577 168.3
Ours-TE-TG-MG 0.468 0.128 88.13 6.204 203.3
Ours-TG-MG 0.447 0.139 62.79 4.913 187.4
Ours-TE 0.413 0.375 58.81 4.153 167.5
Ours-MG 0.435 0.175 61.09 3.972 182.5
Ours-TG 0.399 0.400 39.41 2.120 161.1
Ours-RN 0.416 0.396 46.71 1.542 174.2
Ours-CE 0.371 0.402 34.16 1.346 158.4
Ours 10 0.369 0.349 35.27 1.693 158.7
Ours 30 0.387 0.353 36.26 1.933 151.7
Ours 0.364 0.418 32.66 1.273 150.6
Table 1. Comparison with baselines and our ablation variants. Our
full model (with a time interval of 20) outperforms all of them.

videos, likely because its conditional variational autoencoder does
not match the image generation quality of diffusion models. Besides,
this pure pixel-based method also produces unreasonable painting
orders. Our model outperforms these baselines. Finally, we present
the quantitative comparisons in Table. 1. Our pipeline surpasses
all tested baselines across all metrics. For additional comparisons
and analysis, including the visualization of distance curves and the
distribution of their slopes, please refer to the supplementary.
Human Study. We conducted a human study on the generated
painting processes of 8 in-the-wild paintings. The 33 participants
were first presented with 3 examples of the real painting process as
reference. Then for each painting, the participants were presented
with 4 randomly shuffled painting processes (1 for our method
and 3 for baselines), and were asked to give a rating from 1 to 5
(higher means better) for each process. We normalized the rating
of each example and user to remove the user bias. Our method
achieves the highest average rating, surpassing SVD by 1.9 times,
Paint Transformer by 2.1 times, Timecraft by 3.0 times. These show
that ourmethod can produce a better painting process than baselines.
Please see supplementary for more details.
Ablation Study. We perform two ablation studies. The first one
evaluates the different components in the pipeline using 7 variants.
(1) Ours-TE-TG-MG: full model excluding time embeddings, text,
and mask generators. (2) Ours-TG-MG: full model without text and
mask generators. (3) Ours-TE: full model without time embeddings,
omitting the time interval in the pipeline. (4) Ours-MG: full model
without the mask generator. (5) Ours-TG: full model without the
text generator, omitting text in the pipeline. (6) Ours-RN : full model
without ReferenceNet, where the target image is inputted to the
feature encoder in a manner similar to the current image. (7) Ours-
CE: full model without the next CLIP generator. Results shown in
Table. 1 and Fig. 5 indicate that the full model surpasses all variants.
In addition to the discussion in Sec. 3, we observe that: (1) Ours
outperforms Ours-TE, especially on DDC and DTS, highlighting the
importance of time embeddings. (2) Ours-MG exhibits poor perfor-
mance in IoU, illustrating the effectiveness of mask guidance for

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

Inverse Painting: Reconstructing The Painting Process • 9

GT

Ours

SVD

Paint
Transformer

Timecraft

Fig. 8. Comparison with baselines. Displayed frames are evenly sampled from GT (top row) and generated videos (other rows). The last GT frame (top-right)
is used as input. SVD produces noticeable artifacts such as strange color blocks and truncated tree trunks, as highlighted by the red arrows in columns 1 and
3. Additionally, it produces unreasonable painting orders and tends to get stuck during the process (e.g., minimal change between columns 5 and 6). Paint
Transformer displays a non-human-like painting order and can only produce a “stylized” version of the target painting due to the limitations of parameterized
paintstrokes. Timecraft results in blurry outputs with noticeable artifacts. In contrast, our method better mimics the human-like painting process and achieves
higher visual quality.

(a) Current Image (b) 10 seconds (c) 20 seconds (d) 30 seconds (e) Target Image

Fig. 9. Ablation of time interval. (a) and (e) show the current and target image, respectively. (b) to (d) show the predicted next images and their masks
(inset) given different time intervals. As the time interval increases, the size of the predicted mask expands, leading to more extensive updates on the canvas.
Image courtesy Cleveland Museum of Art.

focus regions. (3) Ours outperforms Ours-RN, showing the effective-
ness of using ReferenceNet to inject target image features into the
diffusion model. (4) Ours works better than Ours-CE, indicating that
the next CLIP generator offers beneficial complementary guidance.
The second ablation study evaluates the effect of different time

intervals during testing. We test two variants, Ours 10 and Ours 30,
with time intervals set to 10 and 30 seconds respectively. Table. 1
shows that the IoU for these variants is lower than Ours, which
might be because the average time interval in the validation set is
around 22 seconds, closer to Ours (20 seconds). This suggests that
time embeddings effectively guide the mask generator to produce

reasonable size of region masks. Additionally, Fig. 9 visualizes the
impact of different time intervals on a single canvas update. A larger
time interval leads to a larger region mask and a more substantial
update on the canvas, demonstrating how time intervals can be used
to regulate the number of frames required to complete a painting.
Different time intervals can also be used at various stages of the
painting process based on user needs.
Analysis of the Text and Mask Generators. First, we compare
the entire sequences of our generated text instructions with the
sequences of GT instructions in two ways: (a) without considering
order, 91% of our instructions appear in the GT instructions, and

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

10 • Chen, et al

(a) Input (b) Time Map

Fig. 10. Emergent property. The time map (b), derived from the difference
masks, is similar to the (inverse) depth map of the target painting (a). This
highlights our method’s effectiveness in capturing the typical painting
principle of layering from back to front, as learned from the training videos.
Image courtesy Simon Berger.

(b) taking order into account by computing the longest common
subsequence (LCS) between GT and our instructions, 78% of our
instructions are included in the LCS. These show that our text
generator provides reasonable instructions for the painting order.
Second, instead of evaluating entire text instruction sequences,

we evaluate a single canvas update with GT current image and time
interval as input. This enables the use of GT text and masks for
each update during evaluation. Our text generator produces text
instructions that align with GT text 72% of the time, outperforming
the pretrained LLaVA model used to initialize it (31%). When provid-
ing the predicted text as input to the mask generator, the predicted
mask’s IoU is 0.64, slightly lower than using GT text (0.70). These
demonstrate the text generator’s effectiveness.
Finally, we also evaluate our mask generator based on a single

canvas update. Generating masks by a pretrained segmentation
method [Liu et al. 2023c] using GT text yields an IoU of 0.42, lower
than our mask generator’s 0.70. Removing the text condition in
our mask generator yields a suboptimal IoU of 0.58. These results
demonstrate the effectiveness of our mask generator design.
Error Accumulation. Our approach of training the diffusion mod-
els with GT inputs helps alleviate error accumulation. Specifically,
training with GT texts and masks avoids errors propagated from the
trained text and mask generators, achieving better LPIPS score of
0.364 compared to training with predicted texts and masks (0.438).
Additionally, training with GT current frames enhances both stabil-
ity and efficiency. Furthermore, during inference, using the target
image as input helps the convergence of the painting process and
further alleviates error accumulation.

5 DISCUSSIONS
Emergent Property. Our method showcases an emergent property
related to the painting principle, as depicted in Fig. 10. The time
map (b) is derived from difference masks �̂�𝑡 between consecutive
keyframes in the generated videos. Each mask is weighted by its se-
quence position 𝑡 and merged into a single image, with overlapping
areas selecting the highest value to form the time map. This map is
similar to a depth map, indicating that the back-to-front painting
principle – reflective of the artists’ styles in our training dataset –
has been effectively captured by our method.

Fig. 11. Failure cases. Trained only on landscapes, our method produces
unnatural results on portraits. Image courtesy the MET.

Limitations and FutureWork. Ourmethod has several limitations.
First, it is trained on landscape paintings and struggles to generalize
to other types of paintings like portraits (Fig. 11). Future work will
involve extending its applicability to different genres. Second, our
method currently exhibits limited painting styles due to the training
data. Training on a larger and more diverse dataset could help the
model learn various painting styles. Third, our method fails when
encountering paintings with large objects (e.g., colosseum) that are
uncommon in the landscape. In such cases, the model can still paint
the objects with the help of predicted CLIP embeddings, but in
an incorrect painting order. Incorporating a semantic map could
potentially address this issue.

ACKNOWLEDGMENTS
This work was supported by the UW Reality Lab and Google.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

Inverse Painting: Reconstructing The Painting Process • 11

REFERENCES
Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian,

Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. 2023.
Stable video diffusion: Scaling latent video diffusion models to large datasets. arXiv
preprint arXiv:2311.15127 (2023).

Ross Bob. 1987. Bob Ross Experience The Joy of Painting Volume X 10 Ten. Bob Ross;
First Edition.

Bowei Chen, Brian Curless, Ira Kemelmacher-Shlizerman, and Steve Seitz. 2023. Total
Selfie: Generating Full-Body Selfies. arXiv preprint arXiv:2308.14740 (2023).

Manuel Ladron deGuevara,Matthew Fisher, andAaronHertzmann. 2023. Segmentation-
Based Parametric Painting. arXiv preprint arXiv:2311.14271 (2023).

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Annette Dozier. 2007. Painting peaceful country landscapes. North Light Books.
Kevin Frans and Chin-Yi Cheng. 2018. Unsupervised image to sequence translation

with canvas-drawer networks. arXiv preprint arXiv:1809.08340 (2018).
Hongbo Fu, Shizhe Zhou, Ligang Liu, and Niloy J Mitra. 2011. Animated construction

of line drawings. In Proceedings of the 2011 SIGGRAPH Asia Conference. 1–10.
Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals.

2018. Synthesizing programs for images using reinforced adversarial learning. In
International Conference on Machine Learning. PMLR, 1666–1675.

David Ha and Douglas Eck. 2017. A neural representation of sketch drawings. arXiv
preprint arXiv:1704.03477 (2017).

Paul Haeberli. 1990. Paint by numbers: Abstract image representations. In Proceedings of
the 17th annual conference on Computer graphics and interactive techniques. 207–214.

Aaron Hertzmann. 1998. Painterly rendering with curved brush strokes of multiple sizes.
In Proceedings of the 25th annual conference on Computer graphics and interactive
techniques. 453–460.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local
nash equilibrium. Advances in neural information processing systems 30 (2017).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685 (2021).

Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. 2023a. Animate any-
one: Consistent and controllable image-to-video synthesis for character animation.
arXiv preprint arXiv:2311.17117 (2023).

Teng Hu, Ran Yi, Haokun Zhu, Liang Liu, Jinlong Peng, Yabiao Wang, Chengjie Wang,
and Lizhuang Ma. 2023b. Stroke-based Neural Painting and Stylization with Dy-
namically Predicted Painting Region. In Proceedings of the 31st ACM International
Conference on Multimedia. 7470–7480.

Zhewei Huang, Wen Heng, and Shuchang Zhou. 2019. Learning to paint with model-
based deep reinforcement learning. In Proceedings of the IEEE/CVF international
conference on computer vision. 8709–8718.

Biao Jia, Chen Fang, Jonathan Brandt, Byungmoon Kim, and Dinesh Manocha. 2019.
Paintbot: A reinforcement learning approach for natural media painting. arXiv
preprint arXiv:1904.02201 (2019).

Dmytro Kotovenko, Matthias Wright, Arthur Heimbrecht, and Bjorn Ommer. 2021.
Rethinking style transfer: From pixels to parameterized brushstrokes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12196–12205.

Alexander Leiser and Tim Schlippe. 2021. AI in art: simulating the human painting pro-
cess. In International Conference on ArtsIT, Interactivity and Game Creation. Springer,
295–308.

Peter Litwinowicz. 1997. Processing images and video for an impressionist effect.
In Proceedings of the 24th annual conference on Computer graphics and interactive
techniques. 407–414.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023a. Visual Instruction
Tuning.

Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Ruifeng Deng, Xin Li, Errui Ding,
and Hao Wang. 2021. Paint transformer: Feed forward neural painting with stroke
prediction. In Proceedings of the IEEE/CVF international conference on computer vision.
6598–6607.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, et al. 2023c. Grounding dino: Marrying dino with
grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499
(2023).

Xiao-Chang Liu, Yu-Chen Wu, and Peter Hall. 2023b. Painterly Style Transfer With
Learned Brush Strokes. IEEE Transactions on Visualization and Computer Graphics
(2023).

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Meinard Müller. 2007. Dynamic time warping. Information retrieval for music and
motion (2007), 69–84.

Royi Rassin, Shauli Ravfogel, and Yoav Goldberg. 2022. Dalle-2 is seeing double: flaws
in word-to-concept mapping in Text2Image models. arXiv preprint arXiv:2210.10606
(2022).

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2022. High-Resolution Image SynthesisWith Latent DiffusionModels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
10684–10695.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. 2022. Photorealistic text-to-image diffusion models with deep language under-
standing. Advances in Neural Information Processing Systems 35 (2022), 36479–36494.

Jaskirat Singh, Cameron Smith, Jose Echevarria, and Liang Zheng. 2021. Intelli-paint:
Towards developing human-like painting agents. arXiv preprint arXiv:2112.08930
(2021).

Jaskirat Singh and Liang Zheng. 2021. Combining semantic guidance and deep re-
inforcement learning for generating human level paintings. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16387–16396.

Fan Tang, Weiming Dong, Yiping Meng, Xing Mei, Feiyue Huang, Xiaopeng Zhang,
and Oliver Deussen. 2017. Animated construction of Chinese brush paintings. IEEE
transactions on visualization and computer graphics 24, 12 (2017), 3019–3031.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

Zunfu Wang, Fang Liu, Zhixiong Liu, Changjuan Ran, and Mohan Zhang. 2024.
Intelligent-paint: a Chinese painting process generation method based on vision
transformer. Multimedia Systems 30, 2 (2024), 1–17.

Ning Xie, Hirotaka Hachiya, andMasashi Sugiyama. 2013. Artist agent: A reinforcement
learning approach to automatic stroke generation in oriental ink painting. IEICE
TRANSACTIONS on Information and Systems 96, 5 (2013), 1134–1144.

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong
Chen, and Fang Wen. 2022. Paint by Example: Exemplar-based Image Editing with
Diffusion Models. arXiv preprint arXiv:2211.13227 (2022).

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional control
to text-to-image diffusion models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 3836–3847.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Amy Zhao, Guha Balakrishnan, Kathleen M Lewis, Frédo Durand, John V Guttag, and
Adrian V Dalca. 2020. Painting many pasts: Synthesizing time lapse videos of
paintings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8435–8445.

Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and Zhenwei Shi. 2021. Stylized
neural painting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 15689–15698.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Painting Process Generation
	2.2 Diffusion Models

	3 Our Method
	3.1 One-Stage Canvas Rendering Approach
	3.2 Training: Instruction Generation
	3.3 Training: Canvas Rendering
	3.4 Test-Time Generation

	4 Experiments
	5 Discussions
	Acknowledgments
	References

