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A IMPLEMENTATION DETAILS
In this section, we present the implementation details.

A.1 One-Step Canvas Rendering Approach
Please refer to Sec. A.3 for implementation details.

A.2 Training: Instruction Generation
For text instruction generator 𝑔𝑡𝑒𝑥𝑡 , we set the question prompt 𝑝 to:
“There are two images side by side. The left image is an intermediate
stage in a painting process of the right image. Please tell me what
content should be painted next? The answer should be less than 2
words.”

We obtain the ground-truth text instructions 𝑝𝑡 with the assis-
tance of the pretrained LLaVA 1.5 model “LLaVA-v1.5-7B1”. Specifi-
cally, we horizontally concatenate the ground-truth current image
𝐼𝑡−1 with the ground-truth next image 𝐼𝑡 . We then input this con-
catenated image alongside the modified question prompt 𝑝′, which
reads: “There are two images side by side. The right image is the next
step of the left image in the painting process of a painting. Please
tell me what is added to right image? The answer should be less
than 2 words.” The LLaVA model then outputs the text instructions
𝑝𝑡 , where we manually correct any inaccuracies in 𝑝𝑡 .

For fine-tuning 𝑔𝑡𝑒𝑥𝑡 , we employ LoRA and train for 10 epochs,
using a learning rate of 1e-4 and a batch size of 16. The fine-tuning
process takes approximately 5 hours on a single NVIDIA A100 GPU.
For the mask generator 𝑔𝑚𝑎𝑠𝑘 , we implement this as the UNet

architecture proposed by Stable Diffusion [Rombach et al. 2022].
The input layer of the UNet is modified to accept a 9-channel input,
tailored for the spatial input components [𝐸𝐼 (𝐼𝑇 ), 𝐸𝐼 (𝐼𝑡−1), 𝑀𝑑 ]. For
the time encoder 𝑔𝑡 , we implement 3 fully connected layers that
progressively increase the input feature dimension from 21 to 256,
512, and finally 768. A ReLU activation function follows each fully
connected layer, with the exception of the last one to allow for linear
output transformation. We train 𝑔𝑚𝑎𝑠𝑘 and 𝑔𝑡 for 80k steps with
a learning rate of 1e-5 and a batch size of 1. The training process
takes approximately 13 hours on a single NVIDIA A100 GPU.

A.3 Training: Canvas Rendering
The feature extractor 𝑔𝑓 takes as input the ground-truth current
image 𝐼𝑡−1 and region mask𝑀𝑡 , outputs an encoded feature of them.
1https://huggingface.co/liuhaotian/llava-v1.5-7b
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This feature extractor is implemented as a shallow network contain-
ing 9 convolutional layers, which scales the input spatial resolution
by 8. The next CLIP generator, denoted as 𝑔𝑐 , accepts the CLIP em-
beddings of both the ground-truth current image, 𝐶𝐿𝐼𝑃 (𝐼𝑡−1), and
the target image,𝐶𝐿𝐼𝑃 (𝐼𝑇 ), as inputs. It then outputs a prediction for
the CLIP embedding of the next image. Within 𝑔𝑐 , the embeddings
𝐶𝐿𝐼𝑃 (𝐼𝑡−1) and𝐶𝐿𝐼𝑃 (𝐼𝑇 ) are concatenated along the feature dimen-
sion. This concatenated vector is subsequently processed through
a three-layer multi-layer perceptron (MLP). The MLP’s layers map
the features from dimensions of 1536 to 768, 384, and back to 768
respectively. The ReLU activation function is employed at each layer
except the final one, where no activation is applied. The time en-
coder𝑔𝑡 consists of 3 fully connected layers, same as that introduced
in Sec.A.2. For more details on the implementation of ReferenceNet
𝑔𝑟 , please refer to [Hu et al. 2023a].

We initialize 𝑔𝑢 using RealisticVision V5.1 [SG_161222 2023]. The
models within canvas rendering, namely 𝑔𝑢 , 𝑔𝑟 , 𝑔𝑓 , 𝑔𝑡 , and 𝑔𝑐 , are
jointly trained using a learning rate of 1 × 10−5 and a batch size of
1. Each conditional signal is dropped (set to zero) 10 percent of the
time, in accordance with the classifier-free guidance method [Ho
and Salimans 2022]. This enables us to control the strength of each
conditional signal at the test time inference. We train the models in
200k steps, taking around 34 hours on a single NVIDIA A100 GPU.
For the one-stage approach outlined in Sec. 3.1 of the main pa-

per, we use the same training strategy but exclude text and mask
instructions.

A.4 Test-Time Generation
At a specific step 𝑡 − 1, we render the subsequent image 𝐼𝑡 using the
trained pipeline. The denoising process of the diffusion renderer em-
ploys a scheduler based on ancestral sampling, specifically utilizing
the Euler method steps [Karras et al. 2022]. The denoising timestep
𝑆 is set to 25. For classifier-free guidance, we assign guidance scales
of 5 for text, mask, and time interval, and a scale of 2 for the next
CLIP embeddings. Each update in this process takes approximately
4 seconds on a single NVIDIA A100 GPU. The generation process
is halted if the perceptual distances between 𝐼𝑡−2 and 𝐼𝑡−1, and
between 𝐼𝑡−1 and 𝐼𝑡 , are both less than 1 × 10−3.

A.5 Baselines Details
For Timecraft, we train the model on our dataset using the default
settings provided in the official code. The training consists of two
stages: pairwise optimization and sequence optimization. In the first
stage, we train the model for 500K steps, which takes approximately
4 hours on 2 TITAN XP GPUs. In the second stage, we train the
model for 78K steps, which takes around 25 hours on 2 TITAN XP
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GPUs. We observed that training with more steps will degrade the
model performance.
For Stable Video Diffusion (SVD), we fine-tune a 14-frame model

on our dataset using LoRA [Hu et al. 2021]. During fine-tuning, we
sample one frame from our training sequences as input and use
its previous 13 frames as ground truth, padding with white images
when necessary. The target image is used as the input frame 40%
of the time, while other images are randomly selected otherwise.
We fine-tune the model for 2K steps, which takes around 1.5 hours
on 4 NVIDIA A100 GPUs. Fine-tuning for 2K steps yields the best
performance; more steps cause the model to produce painting videos
that get stuck, while fewer steps result in underfitting, causing the
camera viewpoint to shift.

For Paint Transformer, we use the pretrained model provided by
the authors for our comparisons. This model generates 200 frames
given an input painting. We additionally evaluate two stroke-based
rendering baselines [Hu et al. 2023b; Zou et al. 2021] and an amodal
segmentation baseline [Ozguroglu et al. 2024] in Sec. B, please refer
to Sec. B.2 for their implementation details.

B EXPERIMENTS

B.1 More Results
In Fig. 5 and Fig. 6, we showmore results of ourmethod. As discussed
in the main paper, our method can handle paintings with different
styles and generate human-like painting process in terms of painting
order, focal region and layering techniques.

B.2 More Baselines
We compare our method with two additional stroke-based rendering
baselines and an amodal segmentation baseline.

Stylized Neural Painting [Zou et al. 2021] employs an optimization-
based approach featuring a novel neural renderer that mimics vector
renderer behavior. Here, the stroke prediction is framed as a param-
eter search process aiming to maximize the similarity between the
input image and the rendered output. We utilize the pretrained net-
work “the oil-paint brush” provided by the authors for comparison.
This method generates 499 frames given a target painting.

Compositional Neural Painter [Hu et al. 2023b] utilizes a phased
RL strategy for predicting paint regions and a painter network
to determine stroke parameters. A neural stroke renderer is then
trained to apply the strokes onto the canvas based on the predicted
stroke parameters. We use the authors’ pretrained networks for
comparison. This method generates 50 frames from a target painting.
pix2gestalt [Ozguroglu et al. 2024] completes a partially visible

object in the image given the partial segment mask of the object. We
adapt it to out task as follows: (1) segment the target image using
[Liu et al. 2023], (2) complete each segment using the pretrained
model of pix2gestalt, (3) place completed segments on the canvas by
depth (farther first). The depth of each segment is determined by
the average depth of its pixels, where the depth is estimated using a
pretrained depth estimation model [Yang et al. 2024]. Please note
that we define the painting order heuristically, as the baseline does
not support learning this order.
Similar to the strategy used for Paint Transformer in the main

paper, we set the time intervals for these three baselines based on

Evaluation on Full Paintings
Method LPIPS ↓ IoU ↑ DDC ↓ DTS ↓ FID ↓ FVD ↓
Stylized Neural Painting 0.669 0.031 122.2 8.782 358.3 1457
Compositional Neural Painter 0.680 0.049 91.93 7.507 374.8 1505
pix2gestalt 0.609 0.214 126.3 9.089 341.9 1576
Paint Transformer 0.643 0.104 94.61 6.057 337.3 1616
Timecraft 0.602 0.251 153.2 9.964 289.8 1582
SVD 0.500 0.197 135.5 8.577 168.3 1594

Ours-TE-TG-MG 0.468 0.128 88.13 6.204 203.3 1591
Ours-TG-MG 0.447 0.139 62.79 4.913 187.4 1468
Ours-TE 0.413 0.375 58.81 4.153 167.5 1319
Ours-MG 0.435 0.175 61.09 3.972 182.5 1471
Ours-TG 0.399 0.400 39.41 2.120 161.1 1418
Ours-RN 0.416 0.396 46.71 1.542 174.2 1464
Ours-CE 0.371 0.402 34.16 1.346 158.4 1326

Ours 10 0.369 0.349 35.27 1.693 158.7 1347
Ours 30 0.387 0.353 36.26 1.933 151.7 1279

Ours 0.364 0.418 32.66 1.273 150.6 1273

Evaluation on Cropped Paintings

Timecraft 0.647 0.165 166.29 6.743 363.0 1627
Ours 0.452 0.296 56.62 2.545 197.2 1034
Table 1. Comparison with baselines and our ablation variants on the
full and cropped paintings. Our full model (with a time interval of 20)
outperforms all of them.

the average training video duration (561 seconds) divided by the
number of frames. This results in time intervals of 1.12 seconds for
Stylized Neural Painting and 11.22 seconds for Compositional Neural
Painter. The time interval of pix2gestalt varies for different target
images, depending on the number of detected segments in the target
image.

B.3 More Metrics
We also evaluate the quality of the generated videos using the
Fréchet Video Distance (FVD) [Ge et al. 2024]. While FVD might not
be ideally suited for assessing time-lapse painting process videos,
we include it for the sake of comprehensiveness.

B.4 Baseline Comparison
We present more comparisons with baseline methods on both full
and cropped paintings.
Full Paintings. We provide qualitative comparisons with all base-
lines for full paintings in Fig. 9, Fig. 10, Fig. 11, Fig. 12, and Fig. 13.
The three stroke-based rendering baselines – Stylized Neural Paint-
ing, Compositional Neural Painter, and Paint Transformer – apply
brushstrokes in a non-human-like manner, as they are not trained
on actual painting videos. Furthermore, due to the limitations of
parameterized brushstroke constraints, they produce only a “styl-
ized” version of the target painting. pix2gestalt’s results are non-
human-like and exhibited visual artifacts. This is due to inaccurate
predefined painting order, imperfect segmentation, and unnecessary
paints on the canvas to complete unoccluded segments. SVD often
gets stuck in the painting process, evident in columns 4 to 6 of Fig. 12,
and produces visual artifacts, such as the unreasonable colors in
columns 1 and 2 of Fig. 10 and columns 1 to 5 of Fig. 11. Moreover,
despite being trained on a real painting dataset, it still fails to mimic
the human painting order reasonably. Timecraft generates only very
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low-resolution sequences and introduces noticeable visual artifacts.
In contrast, our method significantly outperforms all baselines in
mimicking human-like painting sequences, focusing on focal areas,
employing layering techniques, and achieving good video quality.
Table. 1 presents the quantitative comparisons across all base-

lines and metrics. Our method outperforms all baselines in every
evaluated metric.
Further, we evaluate how the painting processes generated by

various methods progress toward the target painting in terms of
speed and direction using the distance curve. The distance curve
of a sequence depicts its progression towards the target painting,
plotting time (x-axis, minutes) against LPIPS distance (y-axis) be-
tween target and current images. Among baselines, we select SVD
and Timecraft for analysis. For these two baselines, we use a time
interval of 23.6 seconds, matching the average duration of our train-
ing set. Fig.1 (a) illustrates the distance curve of various methods
applied to a single painting in the validation set. Timecraft fluc-
tuates considerably and fails to consistently approach the target
image. Besides, it does not converge because its outputs are in a very
low resolution. SVD encounters stalls during the painting process,
leading to extended convergence times. Our method exhibits the
curve that most closely aligns with that of the GT. Note that, neither
our method nor SVD achieves perfect reconstruction of the target
painting due to the utilization of VAE. For further analysis, Fig.1 (b)
presents the distribution of the slope of these distance curves across
all paintings in the validation set. Timecraft exhibits over 20% of its
slopes between 0 to 0.05 (marked with a red arrow), indicating fre-
quent deviations from the target image, such as erasing and adding
unrelated colors. SVD’s slopes, with over 50% ranging from -0.05 to
0, indicate minimal updates on the canvas. In contrast, our method’s
distributions are closer to those of the GT, demonstrating that our
painting process progresses at a reasonable speed and direction.
Cropped Paintings. We compare with Timecraft by randomly se-
lecting 3 low-resolution crops from every downsampled full painting
in the validation set, following the cropping strategy presented in
the paper of Timecraft. Fig. 2 provides a qualitative comparison of
cropped paintings with Timecraft, where our approach yields a more
authentic painting process in terms of painting order, focus regions,
and overall video quality. The quantitative results in Table. 1 fur-
ther demonstrate that our method outperforms Timecraft across all
metrics.

B.5 Ablation Study
In Fig. 7, we present the ablation studies for variants omitting dif-
ferent conditional signals. Both one-step variants, Ours-TE-TG-MG
and Ours-TG-MG, yield unsatisfactory results, underscoring the sig-
nificance of the two-stage design. Ours-MG heavily depends on text
instructions and tends to complete an entire semantic class with
each update, unexpectedly accelerating the generation process ex-
cessively. Ours-TG struggles to comprehend the semantic contents
of the target paintings, consequently painting the grass and flowers
simultaneously without employing layering techniques. We further
present qualitative results of the variants without considering pre-
dicted CLIP embedding (Ours-CE) in Fig. 3. It completes details of
the mountain at an early stage, which fails to mimic the painting
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Fig. 1. Quantitative analysis of painting process. (a) illustrates the
distance curves (DC) of various methods applied to a specific painting;
(b) visualizes the distribution of slope of these distance curves across all
paintings in the validation set. In (b), we classify the slopes into 20 evenly
spaced intervals ranging from -1 to 1, and plot the percentage of the slope
value (y-axis) falls into each interval (x-axis). For instance, the peak of the
green curve in (b) shows that over 50 percent of the slopes range from -0.05
to 0. A negative slope value suggests that the update to the canvas bring it
closer to the target image (as expected), and vice versa.

GT

Ours

TC

Fig. 2. Qualitative comparison on low-resolution painting crops. We
compare with Timecraft (TC) on low-resolution painting crops. Timecraft
produces artifacts and fails to produce a human-like painting process. In
contrast, our method delivers a more realistic painting video with better
quality.

style of artists in our training set. In contrast, Ours delivers the most
human-like painting process, characterized by a logical painting
order, targeted focal regions, and proper use of layering techniques.

B.6 Human Study
As described in the main paper, we normalized the ratings to remove
user bias. Specifically, we divided each participant’s rating for a
specific painting sequence by the sum of their ratings for all 4
painting sequences (of the same target painting). We then averaged
these normalized ratings across all paintings and participants for
each method.

Our method achieved the highest average normalized rating, sur-
passing SVD by 1.9 times, Paint Transformer by 2.1 times, and Time-
craft by 3.0 times (reported in the main paper). Without normaliza-
tion, our method received the highest rating at 4.21, compared to
SVD (2.96), Paint Transformer (2.11), and Timecraft (1.52).
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(a) Current Image (b) Ours-CE (c) Ours (d) Target Image

Fig. 3. Ablation of the predicted CLIP embeddings. The current and target images are shown in (a) and (d), respectively. (b) and (c) represent the outputs
generated by different models at the same timestep, utilizing the same time interval, current image, and target image. Without incorporating predicted CLIP
embeddings (b), the model completes the mountain in full detail. The process involves frequent switching of color brushes, deviating from the painting style
observed in the training set. Our full model (c) paints the base layer of the mountain first and leaves the details for latter stages, which follows the artistic
techniques presented by the artists in our training data. Please see Fig. 6 in the main paper for more keyframes generated by the full model. Image courtesy
Catherine Kay Greenup.

Fig. 4. More failure cases. Trained on landscape paintings, our method
struggles with portrait paintings. Image courtesy Rawpixel.

B.7 Influence of Random Seeds
In Fig. 8, we illustrate the outcomes of utilizing different random
seeds for the diffusion model in our methods. Although different
seeds are used, the generated painting processes generally follow
a similar order, with minor variations in the sequence of painting
foreground objects. These variations are reflective of those observed
in the training data, demonstrating that our method can learn the
general painting order from these slightly varied sequences and cap-
ture the variability. This adaptability allows for the use of different
random seeds at inference time to achieve diverse results.

B.8 Failure Case
Fig. 4 shows another failure case of our method on the portrait
painting, Mona Lisa.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2024.
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Generated Painting Process (Sampled KeyFrames)

Fig. 5. More qualitative results on our method. We show our results on in-the-wild paintings, where the left 5 columns are sampled frames from the
generated painting process, and the rightmost column is the target image. Our method effectively handles paintings across various artistic styles, color themes,
and aspect ratios. The generated sequences showcase human-like painting orders, maintain reasonable focal regions during different phases, and employ
layering painting techniques. Images courtesy Michelle Shlizerman and Catherine Kay Greenup. Image courtesy Julius Zorkoczy, Landscape with a Blooming
Meadow, Slovenska narodna galeria, SNG, https://www.webumenia.sk/dielo/SVK:SNG.K_1710. Image courtesy Henri Rousseau, Virgin Forest with Sunset,
Kunstmuseum Basel Museum.
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Generated Painting Process (Sampled KeyFrames)

Fig. 6. More qualitative results on our method. We show our results on in-the-wild paintings, where the left 5 columns are sampled frames from the
generated painting process, and the rightmost column is the target image. Our method effectively handles paintings across various artistic styles, color themes,
and aspect ratios. The generated sequences showcase human-like painting orders, maintain reasonable focal regions during different phases, and employ
layering painting techniques. Images courtesy Barnes Foundation, Catherine Kay Greenup, The Clark Art Institute and Michelle Shlizerman. Image courtesy
František Kaván – Red Poppies, 1910, Slovenská národná galéria, SNG, https://www.webumenia.sk/dielo/SVK:SNG.O_4549.
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Ours –TE
- TG -MG

Ours

Ours
- TG -MG

Ours
-MG

Ours
-TG

NoneNone

None

None

Fig. 7. Ablation study of different conditional signals. The row with “None” means there are no enough keyframes for display. For instance, the first row
has only four keyframes, leaving the first two columns “None”. Ours-TE-TG-MG generates excessive content for each update, resulting in only four keyframes
throughout the entire painting process. Ours-TG-MG slows generation slightly but still converges quickly. Besides, it also produces unreasonable rendering, as
shown in column 2. Ours-TG, relying heavily on text instructions, tends to complete entire semantic classes in each update, promoting swift convergence.
Ours-MG leverages region masks to moderate the speed of generation. Yet, in the absence of textual guidance, it struggles to adequately differentiate between
semantic classes. For example, in column 4 to 6, the flower and grass are painted simultaneously, rather than using layering techniques that complete the
grass first and add the flower afterward. In contrast, Ours achieves a more logical and orderly painting process. Image courtesy Julius Zorkoczy, Landscape
with a Blooming Meadow, Slovenska narodna galeria, SNG, https://www.webumenia.sk/dielo/SVK:SNG.K_1710.

Fig. 8. Comparison of using different random seeds for the diffusion model in our method. Each row displays the results of a specific random seed.
Despite using different random seeds, the painting orders are generally similar (i.e., back to front) with slight differences in painting foreground objects. For
example, rows 1 and 2 tend to address the far ground and house in the final stages, whereas row 3 completes the far ground immediately after finishing the
background nearby. Both styles of painting order are observed in the training set, and our method successfully captures these variations. Image courtesy
National Gallery of Art.
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Fig. 9. Comparison with baselines on in-the-wild images. Our method significantly outperforms these baselines in generating a more human-like
painting video with better visual quality. Image courtesy Catherine Kay Greenup.
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Fig. 10. Comparison with baselines on in-the-wild images. Our method significantly outperforms these baselines in generating a more human-like
painting video with better visual quality. Image courtesy Rawpixel.
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Fig. 11. Comparison with baselines on in-the-wild images. Our method significantly outperforms these baselines in generating a more human-like
painting video with better visual quality. Image courtesy Rawpixel.
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Fig. 12. Comparison with baselines on in-the-wild images. Our method significantly outperforms these baselines in generating a more human-like
painting video with better visual quality. Images courtesy Barnes Foundation.
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Fig. 13. Comparison with baselines on in-the-wild images. Our method significantly outperforms these baselines in generating a more human-like
painting video with better visual quality. Image courtesy Catherine Kay Greenup.
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